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Abstract—Due to the inelastic behavior of beam-to-column connections, the critical behavior of
semi-rigid frames is affected not oaly by the loading and unloading characteristics of connections
at the critical points, but also by their load history up to these points. Thus. the stability analysis
of frames of this type becomes very complicated, compared with pinned or rigid frames. Herein, we
shall present a refined method which can accurately analyze the inclastic, critical behavior of semi-
rigid frames, i.c. bifurcation and limit load instability. This method can also take into account the
load history caused by eyclic loading. Using the proposed method, the rectangular semi-rigid frames
with or without the load history due to cyclic wind load are precisely analyzed to examine their
inclastic critical behavior,

LAINTRODUCTION

Itis generally assumed in a conventional analysis of steel frameworks, that the beam-to-
column connections are cither fully rigid or ideally flexible. Although these assumptions
are simple and convenient for practical design use, these highly ideatized models could lose
their accuracy when applied to some connections whose rigidities lie somewhere between
these two extremes. In fact, most of the so-called pinned connections possess some rigidity,
while the connections regarded as rigid olten show some Nexibility.

In view of the above, a considerable amount of study, as summarized by Jones ¢t al.
(19383). hus been performed on the analysis of semi-rigid frames : Romstad and Subramanian
(1970}, Ackroyd (1979). Cook (1983), Simitses and Viahinos (1984), Yu and Shanmugam
(1986), Lui and Chen (1986), Goto and Chen (1987b), Poggi and Zandonini (1987) and
Mazzolani (1987), among others. Since the moment--rotation relationships of connections
mostly exhibit nonlincar behavior even at a low moment level, these studies usually consider
the material nonlincarity in connections. In addition to the nonlinearity of connections, the
geometrical nonlincarity has to be considered in order to analyze the stability of the frames.

The stability of a structural system is lost due to the existence of singulir points on
the equilibrium path, referred to as critical points, i.c. bifurcation points and limit points.
Thus, to assess the stability, the behavior of semi-rigid frames has to be accurately analyzed
around these critical points. However, owing to the inclasticity of the connections, the
critical behavior of these frames is affected not only by the loading and unloading charac-
teristics of conncctions at the critical points, but also by their load history up to thesc
critical points. Thus, the stability analysis of frames of this type becomes more complicated
compared with that of pinned or rigid frames.

The customary methods of analysis mostly use the simple load-control incremental
method. with or without the Newton - Raphson iterative procedures and no special attention
is paid to the analysis around the critical points. Consequently, customary methods cannot
even give accurate information about the limit-load instability. to say nothing about the
inelastic bifurcation. Furthermore, some buckling analyses determine the bifurcation load
by using the sccant stiffness. not the tangent stiffness of structural systems, thus yielding
inaccurate results.
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Fig. I. Coordinate system and physical quantities for a member.

Herein, we shall present a refined method which can analyze the inelastic critical
behavior of semi-rigid frames, with or without load history in connections. In the analysis
of nonlincar equilibrium paths. except bifurcation points, we shall employ here the incremen-
tal arc-length method, combined with the Newton-Raphson iterative procedure. As already
confirmed by Riks (1979) in clastic systems, this method can also remove the singularity at
the limit point in the analysis of semirigid frames. At bifurcation points for perfect systems,
solutions however, have an inherent singularity and this singularity of tangent stiffness
cannot be climinated even by the use of the arc-length method. Thus, we have developed
an accurate method which can not only identify the bifurcation point, but also trace the
bifurcation path. This method is rather simple because it only utilizes the tangent stiffness
cquations along with Hill's theory of uniqueness of elastic-plastic solids (Hill, 1958). The
present analysis further implements a highly accurate connection model, based mainly on
the constitutive relations obtained from experiments, The connection model includes the
inclastic, cyclic behavior of semi-rigid beam-to-column connections.

Although the present analysis considers the exact gecometrical nonlincarity of structural
systems together with the material nonlinearity of connections, the nonlinearity due to
member plastification is ignored for ease of mathematical manipulation.

Using the present method, semi-rigid frames, with or without the load history in
connections, are analyzed as numerical examples to investigate the inelastic, critical behavior
under vertical loads. As for the load history, the cylic wind load is considered here because
of its practical importance.

2. STIFFNESS AND TANGENT STIFFNESS FOR BEAM-COLUMN MEMBER

In the derivation of the member stiffness equation, we adopt the governing differential
equations of nonlincar beam-columns (Goto and Chen, 1987a), where the moderate
rolations as well as the bowing of a member are considered. Using the physical quantities
defined in Fig. 1, the governing equations of nonlincar beam-columns are given by the
following.

Equilibrium equations

N =0, (Ney+M')+p, =0 (la,b)

Boundary conditions
Uy =tog or N =nNy,

o=ty oOr NY+M =nSy
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l’:‘} = 13 or l"’! = —nx‘&l + (2a_c)

where ( )" denotes the differentiation with respect to x and n, takes the values of —1 and
+ L. respectively, at nodes 1 and 2.

Constitutive equations

N = Ed{uy+Hey)'). M= —Elry (3a.b)

In order to obtain the closed-form solution. only the r-component of a distributed
force. p,, with constant magnitude is considered in eqns (1a) and (1b) as the most important
component of a distributed force. The solution so obtained is applicable to most rectangular
frames. Using the summation convention. the closed-form stiffness equation for beam-
columns is given in the form

fi=K,(N)d+ R, (V) de+p.L (N +p,LAN )+ 5CAN ) 4)

where
t
| 3%

V= (NS MUNL S M), ‘{(Z} = ({3 Fa 2y T2, Fa 23 ) (5a.b)

]

Ny = NyLY[EL S, = S,L*/ELl. My = M,L/EIL. p, =p,L*/EI

ﬁ[; = "()[H’.L' (Tﬂ = f‘(w/L. (611—")

All the cocflicients of the stiffness cquation are functions of axial force N,. Specifically, K,
and K, are symmetric with respect to subscripts (i, /) and (/, k), respectively. The above
stiffness equation is essentially the same as that derived previously by the authors (Goto
and Chen, 1987a). The only difference is that all the nodal force components, except the -
axial foree, are climinated on the right side of eyn (4) for casce ol using the Newton -Raphson
iterative procedures.,

The closed-form solutions of beam-columns can be expressed by either trigonometric
functions or hyperbolic functions according to whether the axial force is compressive or
tensile. Furthermore, when the axial foree is zero, the above solutions become indefinite and
another solution, expressed by fourth-order polynomials, has to be used for this special
case. Thus, usually three kinds of stiffness equations have to be used, depending on the
value of the axial force. Such a procedure is cumbersome and the power-series expression
(Goto and Chen, 1987a,b) is therefore introduced here, considering that both trigonometric
functions and hyperbolic functions are reduced to the same expression ;

sin yL . -
. =yL+yL Y - (=N

cosyL L -
sinh yL RNy =1

coshyLf =T 2 (=M

7= JUN/EL (Ta-c)

The adoption of the above series expansions reduces egn (4) to exactly the same expression,
regardicss of whether the axial force is tensile or compressive. Morcover, it is free from
numerical instability when the axial force approaches zcro.

In order to carry out the Newton-Raphson itcrative procedure as well as to analyze
the critical points, the tangent stiffness equation is derived as follows from eqn (4), by
taking the increments of f, d, and j, :

8] = AR,AL, +AC.Ap. ®

where A, Ad; and Ap, are the increments of f., d; and j,. respectively, and AK,; and AC,
are given by
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Fig. 2. Modcling of connection : O @ experimental value for top- and scat-angle connection (Hecht-
mann and Johnson, 1947); —: medified exponential model; &y, : initial stitfness.

AK,, = A.l/ + 2R11A(7£' +,;|'L—l/ + EI(K'l 1 + ZA“.I ,/«'l7k +ﬁr1:l/)l/(l - I:I )°

AC, = L,d,+2p,C.+K(L,,d,+25,C /(1 = K)). (9a.b)
. dK, dk, dL, dr. dC
I\'I = ~: 7 Lm 7'" -. .'1 7 - .'l ._7 ..l .
dN, G+ dN, Gt P, dV, Gt dnN, . dn, (10)

The cocllicients of the tangent stiffness equation are also expressed by the power series with
respect to the axial foree, for exactly the same reason as that explained in the derivation of
the stiffness equation. The details of this closed-form tangent stiffness are given elsewhere
(Goto et dl., 1991).

3. MODELING OF CONNECTIONS UNDER CYCLIC LOADING

In this study, the semi-rigid connection is represented by a discrete, inelastic, rotational
spring. To express the nonlinear constitutive relations under monotonic loading for the
virgin connections, the present analysis utilizes the moditied exponential model (Chen and
Lui, 1985; Chen and Kishi, 1989) which curve-fits the experimental data by a function of
the form

M =ka(0) =¥ A1 —exp(—0,/Qic)} + ¥ RH(O,~T)0,—T,). (1)
=1 IR

where M is a connection moment and ky is a function of the relative rotation, 0,, of the
conncction. A, and R, are constants determined by the least squares method using exper-
imental data. £/(x) is Heaviside's step function with respect to x, and ¢ is a scaling factor
for the exponential function.

As shown in Fig. 2, the above model represents the nonlincar connection behavior
fairly well. Furthermore, this model is implemented in a data base program (Chen and
Kishi, 1989) and the constitutive relations based on this model are available for various
types of connections.

As for the connection behavior under cyclic loading. only few experimental data are
known. Thus, it is difficult 10 use the curve-fitting technique to represent the constitutive
relation. [n our previous paper (Goto er al., 1989a. 1991), the independent hardening model
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Fig. 3. Schematic illustration of bounding surface model.

is adopted for simplicity to represent the inclastic behavior. Although this model can take
care of the constitutive relation under one cycle of loading, unloading and reversed loading,
the connection behavior under the repetition of the above loading cycle cannot be expressed
with acceptable accuracy. Thus, to overcome the deficiency of the independent hardening
model, we introduce here the bounding surface modet presented by Dafalias and Popov
(1976) after the first unloading occurs. In this model, the plastic tangent stiffness A§, of the
conncctions is approximated by

kRy = kb + 16/ (5, — D). (12)

where £ is the hardening shape parameter; k%, is the slope of the bounding line and is
determined from the experiment under monotonic loading; d is the distance of the current
moment state from the corresponding bound ; and J,, is the value of § at the initiation for
each loading process. These quantities are schematically shown in Fig. 3, using the moment-
plastic rotation curve. From Fig. 3, the following rclation holds

8 =0, +ky0?P—M. (13)

The plastic part 87 of the relative rotation 0, can be expressed as below, utilizing the initial
stiffness ky, of the connections:

op=0,- L. (19)
kMI

Note that the plastic tangent stiffness of moment-rotation curves can be expressed by

dM
T = kf,. (15)

Equation (15) can be integrated after substituting eqns (12) and (13). Thus, the moment-
rotation relation based on this model is finally derived as
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M = (ki —h)0? — 5., In [1 + (k367 — M)/6,,]. (16)

The hardening shape parameter 4 is determined from eqn (16) such that eqn (16) best
curve-fits the modified exponential model given by eqn (11). With the above connection
model. the tangent stiffness equations for connections are given by

AA'[, = AKM,’ijj
AKyy = AKyz: = —AKy» = —AKya = Aky (17a,b)

where Aky is expressed as follows according to the loading states.

Continuous loading or loading up to the first unloading

m l n .
Aky =Y A,{;’,; exp (—t),/Zic)}+ Y R,H(0,—T)). (18)

i=1 i=

Unloading, reversed loading or reloading

Akyy = Kk /(K% + k). (19)

in which &y is the initial stiffness of the connection and k§, is given by eqn (12).

4. ANALYSIS OF INELASTIC CRITICAL BEHAVIOR
4.1. General

Following the usual procedure in the matrix stiffness method, the structural stilfness
cquation can be derived by assembling the member and connection stiffness cquations,
respectively, given by eqns (4) and (11) or (16). The structural stiffness equation so derived
is nonlincur, and hence critical points may exist, i.c. bifurcation points and limit points, on
the cquilibrium path. Thus, special attention has to be paid to analyze the behavior around
the critical points, since the structural tangent stiffness becomes singular at these points.

In the analysis of the nonlinear equilibrium path, except for the bifurcation points, we
employ the arc-length method. As has been confirmed in elastic systems, this method can
remove the singularity at the limit points, and the critical behavior around these points can
be analyzed with good accuracy. The arc-length method uscd here is a standard type and
no special explanation is made here. Different from the incremental method used primarily
for the customary inclastic analysis, the present method further employs the Newton-
Raphson iterative procedures in order to obtain convergent solutions. This is because the
inclastic M —{), relation is given in terms of the total quantities, as in eqns (11) and (16).

At the bifurcation points for perfect systems, the solution is inherently nonunique, and
the singularity of the tangent stiffness matrix cannot be eliminated even by using the arc-
length method. Comparing with elastic systems, the bifurcation behavior of semi-rigid
frames becomes much more complicated due to the inclastic behavior of connections. Thus,
up to the present time, there is no adequate numerical method available which can be used
to analyze this inclastic bifurcation of semi-rigid frames accurately.

Herein, we shall present an accurate method which can not only identify the bifurcation
point, but also trace the bifurcation path. This method is simple because it only utilizes the
tangent stiffness equation along with the Hill's theory of uniquencss and stability for clastic—
plastic solids (Hill, 1958). The above mcthod will be explained in some detail in the
following.

4.2, Application of uniqueness criterion to bifurcation analysis

(a) Sufficient condition of uniqueness expressed in matrix form. The bifurcation point
is interpreted as a point where the solution of the nonlinear stiffness equation ceases to be
unique for a given load condition. The sufficient condition of uniqueness is given by Hill
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for elastic-plastic solids. Herein. first. we use the tangent stiffness matrix to express Hill's
condition in a form that can be applied to the present matrix analysis. Next. this matrix
condition is reduced to a simpler form. taking into account the structural property of semi-
rigid frames. Using this simplified form of the sufficient condition for uniqueness. the
bifurcation behavior of semi-rigid frames is then investigated theoretically.

For a structural system, it is assumed that the incremental stiffness equations on a
fundamental path and on a bifurcation path are respectively expressed as follows at a
bifurcation point:

AF, = AK Au!. AF, = AKS A, (20a.b)

where superscripts { and b denote the quantities on the fundamental path and the bifurcation
path. respectively, and this notation is used hereinafter.

At the bifurcation point. both eqns (20a) and (20b) hold simultaneously. thus resulting
in the following equation :

AKTAuS — AK[,Auf = 0. @21
Multiplying (A} — Auf) at both sides of eqn (21) yields
ATl = (Auf = ADAK (AW — Al + (A — A)(AKT, — AK) ) A = 0. (22)

Equation (22) is the necessary condition for bifurcation to occur. Converscly, the suflicient
condition for the uniqueness of solutions can be expressed as follows, considering the
stability condition:

Al > 0. 23)

This criterion corresponds to Hill's condition expressed in terms of the tangent stiffness
nuatrix. Furthermore, eqn (22) can be rewritten in 4 more convenient and simpler form,
taking into account the structural property of semi-rigid frames. In the present structural
modecl, the inclastic behavior is considered only for connections. Thus, the second term on
the right-hand side of egn (22) is simplified to

ATl = (A} = Au)AK! (A = Aul) + Y (AkRy. — Akin ) (AU — AUL)ADY., (29)

e=|

where Aky, is the tangent stiffness of a connection given by eqn (18) or (19), and A#d, is the
incremental relative rotation of the connection. Subscript ¢ denotes the connection number
and n_ is the total number of connections. However, Z on the right-hand side of eqn (24)
implies the summation from | to n, with respect to the quantitics with subscript ¢ and the
summation convention is not applied within Z.

Using eqns (22) and (24), the bifurcation behavior of perfect rectangular frames with
semi-rigid conncctions is examined in the following. Loading conditions considered here'
are of two types, as illustrated in Fig. 4. One is distributed loads, applied vertically on
beams, and the other is concentrated loads on columns. Both are increased monotonically
up to the bifurcation. These loading conditions arc chosen from the consideration of
practical importance in customary building frames.

(b) Bifurcation of rectangular frames under distributed loads applied on beams. Based
on Hill's condition. Hutchinson (1972) generally showed the inelastic bifurcation behavior
of elastic-plastic solids for the case when the parts of the solids that have currently yielded,
are loading along the fundamental equilibrium path in the direction of increasing external
load. Under the increase of the distributed load vertically applied on beams, it is clear that
all beam-to-column connnections in the present structures are in a loading state on the
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Fig. 4. Loading conditions of rectangular frames.

fundamental equilibrium path. Thus, the present semi-rigid frames are expected to exhibit
the same bifurcation behavior as generally shown by Hutchinson.

Herein, focusing on the connection behavior, we shall examine the specific biturcation
phenomena of semi-rigid frames. Since eqn (22) holds at bifurcation, we can check the
buckling phenomena by examining the case in which this equation is satisfied.

Along the fundamental equilibrium path, the connections of the present frames are
loading as

A0!, > 0. (25)

Thus, the following condition holds from the constitutive model of connections, according
to whether the connections foad or unload along the bifurcation path :

=

ALY, = Akhy. for AU = 0. (26a)
AKY, > Ay, for AUR <0, (26b)

Considering eqns (23) and (26), the second term of egn (24) is positive or zero as
S (AkY. — AKL)(ADY. — ADL)AOE, > 0. (27)
el

The equals sign of the above equation is possible when the connections deform along the
bifurcation path in such i manner as

A0} > 0. (28)

Noting that ARY, is positive definite below the tangent modulus load determined by the
condition |AKY,| = 0. the tangent modulus foad is the lowest load where eqn (24) becomes
zero. This implics that the first possible bifurcation occurs at the tangent modulus load. In
this case, Af®, satisfies eqn (28) and (A} — Au') coincides with the cigenvector of AK?;. This
bifurcation behavior of semi-rigid frames agrecs exactly with the general notions given by
Hutchinson (1972). As the present semi-rigid frames exhibit the sway mode of buckling,
some connections load. whilst others unload along the bifurcation path. Thus, in view of
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eqn (28). the bifurcation of semi-rigid frames under the present load condition is char-
acterized by the behavior that the increment of the relative rotation is zero in the unloading
connections at the instant of bifurcation.

(¢) Bifurcation of rectungular frames under concentrated loads applied on columns.
Under the concentrated loads. it is convenient to classify the bifurcation behavior into two
cases, according to whether or not the connections load before bifurcation. In order for the
connections not to load before bifurcation. the ratio of the magnitude of concentrated loads
applied vertically on columns. has to coincide with that of the cross-sectional areas of the
corresponding columns. The connections usually load, except for the frames mentioned
above.

When the connections load before bifurcation. the bifurcation behavior of the present
structure is basically the same as that shown in Section 4.2(b) for the frames under
distributed loads applied on beams. Thus. we need only explain the case when the connections
do not load before bifurcation. In this case. both AkL,. and AkY, take the same value, i.e.
the initial stiffness of the connections and the second term of eqn (24) becomes zero.
Accordingly. eqn (24) becomes zero at the tangent modulus load when (Aw} — Ax') coincides
with the eigenvector of AKT,, and bifurcation occurs at this load.

From the coincidence between ALY, and AkY,.. the bifurcation phecnomena in this case
is exactly the same as that of elastic systems. As is well known, the bifurcation point of
elastic rectangular frames of concern is symmetric, where the bifurcation occurs without
the change of applied loads (Thompson and Hunt, 1973 ; Britvee, 1973). It should be noted
that a svmmetric point of bifurcation (Thompson and Hunt, 1973) does not necessarily
exhibit a symmetric buckling mode of deformation, as can be seen from the sway mode of
buckling in the present case. Noting the condition of AKT, = AK?, as well as the bifurcation
phenomena that the applied loads do not change at the instant of bifurcation, eqn (20b) is
reduced to

AF, = AK{,AH? = (). 29)

From eygn (29), the incremental displacement Au® along the bifurcation path is obtained as
the eigenvector of ARY,.

4.3. Numerical method for bifurcation analysis

The present numericul method makes use of the information obtained in Section 4.2,
The bifurcation unalysis consists of two steps, i.c. that of identitying a bifurcation point
and of tracing a bifurcation path.

To identify the lowest possible bifurcation load, first we calculite the tangent modulus
load. The tangent modulus load corresponds to the singular point where [AKY| = 0.
However, different from the limit point, this singularity, which is inherent, cannot be
climinated by the use of the arc-length method. In order to obtain the tangent modulus
load accurately, it is necessary to caleulate the displacements on the fundamental path up
to this foad. For this purpose, we have to remove the singularity at the tangent moduius
load. Since this singularity results from the existence of the swiuy mode of deformation, we
therefore restrain the frames such that they exhibit only the symmetrical mode of defor-
mation, corresponding to the deformation on the fundamental equilibrium path. An exam-
ple of this restraint is shown in Fig. 5. With this restraint, the displacements on the
fundamental path can be obtained without any ditficulty, even at the tangent modulus load.
Thus, using the displacements so obtained, we can accurately evaluate the value of |AKT|.
From the condition JAK!,| = 0, the tangent modulus load can be calculated with a required
accuracy, using the hisection method,

Once the lowest bifurcation point is identified, a bifurcation path is traced from this
point.

If the connections load before bifurcation, initial incremental displacements along the
bifurcation path are determined by the fact that the increments of relative rotation are zero
in the unloading connections, at the instant of bifurcation. In the present numerical analysis,
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Fig. 5. Restrained model for the analysis of fundamental equilibrium path.

we first assume the locations of the unloading connections to form the structural tangent
stiffness matrix AKT,. at the instant of bifurcation. Then. using this tangent stiffness matrix.
we calculate A’ under a load increment to evaluate the incremental relative rotations of
connections. This is to confirm the validity of the above assumption. If the calculated results
coincide exactly with the asumption. Aub so obtained corresponds to the initial incremental
displacement along the bifurcation path. If there are some differences between the assumption
and the calculated results, the assumption is modified until it agrees with the calculated
results. Since connections take cither loading or unloading stitfness, all the possibilitics
which need to be examined are 2% where n is the total number of connections. In most
cascs, the number of possibilitics is considerably reduced by making use of the information
about the possible buckling mode.

On the other hand, when the connections do not load before bifurcation, semi-rigid
rectangular frames exhibit a symmetric point of bifurcation at the tangent modulus load.
Thus, sinilar to clastic systems, the bifurcation path can be traced using the eigenvector of
AK!, as the initial incremental displacement.

Last but not least, if there is fittke difference between the loading and the unloading
stiffness of connections, the value AR}, sometimes becomes numerically singular at the
tangent modulus load. As a result, we may experience some numerical difticulty caused by
the above method, intended for the analysis of bifurcation with unfoading in connections.
More specifically, this may happen in the analysis of frames under concentrated loads
applied on columns. In this case, owing to the small axial deformation of columns, the
relative rotations of connections become small before bifurcation, which results in little
difference between the loading and unloading stiffness of connections. This in turn leads to
a bifurcation phenomena thut is almost the same as that of the frames where connections
do not load before bifurcation. Thus, foliowing the elastic bifurcation analysis, the com-
ponents of the eigenvector AKY, are used as trial incremental displucements to obtain the
bifurcation path.

5. NUMERICAL EXAMPLE
5.1, Test frames

Three types of rectangular frames with fixed base as shown in Fig. 6, are analyzed to
show the validity of the proposed method as well as to examine their critical behavior.
These trames are designed on the basis of Type two construction in AISC/ASD (AISC,
1978) under the loads described in Table 1. The design loads along with the height and bay
width of the frames under consideration, are exactly the same as those of the two-story
single-bay frame shown by Moncarz and Gerstle (1981). They chose the conncections from
among the top, and scat angles tested by Hechtmann and Johnson (1947) ; Specimen No.
23 and No. 25 were selected respectively for the upper and lower beams. Herein, due to
lack of information about Specimen No. 25 as well as for simplicity, Specimen No. 23 is
used for all connections throughout the frames. The moment-rotation curve for this con-
nection under monotonic loading is illustrated in Fig. 2. where the curve expressed by the
modified exponential model is also shown for comparison. The constants of the modified
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Fig. 6. Geometry of rectangular frames.
Table 1. Applied loads
Dead load g =033 Ncem *
(vertical) or 0.245 kN ¢m ol each girder
Live load 2 = 0.239 N em - # on the lower floor of the two-story frame only,
(vertical) or (LI7S kN cm ! ol the lower grider
Wind load w - 0.0957 kN ¢ which results in the concentrated floor loads
(horizontal) 37, = 25.6 kN for the floors of the one-story frames and the lower floor of the two-story frame,

Wy = 12.8 kN for the upper floor of the two-story frame

Table 2. Constants of modified exponential model

C = 0.17,345,750
A, =

0.15.077.925 x 10", —0.74.457,301 x 10", 0.13,416,943 x 10°,
0.68.622,477 x 10, ~0.22,747,253 x 10*, 0.15,788.006 < 10}
R, = 0.18.289,890 x 10, 7,=9.78

A =16, R (j=1) (KN, m).C. T, (= 1): (radian).

Tuble 3. Constants of bounding surface model (KN, m)

Bounding line: M= 1.829 07 +102.7
Initial stitTaess kv = 142.7
Hardening shape parameter : h=21.34

exponential model are summarized in Table 2. After a first unloading occurs in the connec-
tion, the bounding surfuce madel explained previously in Section 3 is used. The hardening
shape parameter /i, the initial stiffness k. and the cquation for the bounding line are
determined as shown in Table 3, making usc of the data for monotonic loading.

5.2. Frames without load history

We examine here the critical behavior of frames without the initial imperfection caused
by the history of cyclic wind load. To analyze the bifurcation of a perfect system, only the
vertical load is applied. As explained previously in Section 4.2, two types of vertical loads
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shown in Figs 7(a)-7(c) and Figs 7(a’)-7(c’) are taken into account from the consideration
of practical importance in customary building frames. One is the distributed load applied
on beams. and the other is the concentrated load on columns. In addition. the concentrated
horizontal loads with several magnitudes as indicated in Figs 7(a)-7(c) and Figs 7(a’)-7(c)
are applied at each floor in order to investigate the transition of the critical behavior from
the perfect system to the imperfect one. In the imperfect system. a sequential loading is
considered. i.e. the horizontal loads are applied first, followed by the vertical loads. Since
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the arc-length method is used in the numerical procedure. the arc-length of vertical-load vs
displacement curve is increased monotonically in cach load sequence.

The results of the numerical analysis are illustrated in Figs 7(a)-7(¢) and Figs 7(a’)
7(¢’). in terms of the vertical-load vs horizontal-displacement relations, classitied according
to the types of structures as well as the loading conditions. Forcomparison, these figures also
include the post-bifurcation equilibrium curves of trames with pinned or rigid connections,
together with those of frames with lincarly clastic connections. The elastic constant for
these connections is determined such that it coincides with the initial stitfness of the
connection curve as shown in Fig. 2. In Figs 7(a’)~7(¢"). the curves shown by broken lines
correspond to perfect systems under vertically distributed loads and these curves are added
here to show the ditference due to the loading condition.

First, we examine the critical behavior under the distributed loads vertically applied
1o beams. From Figs 7(it) -7(c). the characteristics of the load -displacement relations are
almost the same, regardless of the types of structure, Perfect systems first exhibit bifurcation
at the tangent modulus load. However, different from clastic rectangular frames with
pinned, rigid or lincar clastic connections, the load increases continuously up to the limit
point in the post-bifurcation range. This post-bifurcation behavior qualitatively agrees
with that predicted from the general theory (Hutchinson, 1972), In all imperfect systems,
although a bifurcation does not oceur, limit points of the same type can also be found on
the equilibrium path. These limit points are located on a load level higher than the tangent
modulus load. As lhwrclu..llly explained in Scction 4.2, the increment of the relative
rotation becomes zero in the unloading connections, when the bifurcation occurs at the
tangent modulus load. This fact is confirmed in the present analysis. The connections whose
incremental relative rotation becomes zero are marked with * in Figs 7(a) -7(c).

Next, we shall investigate the behavior of frames under the concentrated load vertically
applicd on columns. As can be scen from Figs 7(a”)-7(c’). the characteristics of these load -
displacement curves arc rather different from either those cases under distributed loads or
those with pinned rigid or lincarly clastic connections. That is, in the present case, the loads
applied to perfect systems drop dramatically after the bifurcation occurs at the tangent
modulus load. As for the imperfect systems, although the limit-load instability occurs as in
the previous case under distributed loads, all the maximum loads are smaller than the
corresponding tangent modulus loads. These maximum loads arc lowered by the increase



480 Y. Goto et al.

of lateral loads given as an initial imperfection. As the lateral displacements increase. all
loud—displacement curves gradually approach the tangent modulus load of the frames under
distributed loads.

To summarize the above results. the critical behavior of semi-rigid frames is much
influenced by the vertical load conditions. This is quite different from the behavior of
customary frames with rigid or pinned joints. In the following, we shall explain why the
critical behavior of semi-rigid frames is so much influenced by the loading conditions.
Since this influence is most evident in a perfect system. a perfect system is used here for
explanation.

If the distributed loads are applied on beams. the connections are loaded. This loading
continuously reduces the tangent stiffness of these connections up to the bifurcation point.
However. once the bifurcation occurs. some of the connections unload and their stiffness
increases and consequently. the vertical loads increase even after bifurcation. On the other
hand. when the concentrated loads are applied to columns. connections are not loaded
before bifurcation. thus resulting in no reduction in stiffness. Therefore. these bifurcation
loads coincide with those of the frames with linearly elastic connections, whose elastic
constant corresponds to the initial stiffness of the connection curve. However. when bifur-
cation occurs, the connections suddenly deform. Due to the nonlinear property of the
connection curve in Fig. 2, this deformation reduces the connection stiffness. thus resulting
in instability just after the bifurcation.

5.3, Frames with history of cyelic wind load

Since the beam-to-column connections exhibit inclastic behavior, the critical behavior
of frames with a history of cyclic wind load is expected to behave differently from that
without it.

Herein, prior to the application of cyclic wind load, the vertical load, either distributed
or concentrated, is increased to its design level as shown in Table . Since the design load
is not given for concentrated loads vertically applicd on columns, this load is determined
in such a way that the total value of the concentrated load coincides with that of the
distributed design load. The history of cyclic wind load is given in the following manner.
First, the horizontal wind load is increased monotonically up to the maximum value and
then reduced to zero. Next, the wind direction is reversed and this load is applied from the
opposite side in a similar manner. This wind cycle is repeated until the hysteresis loops of
connections become convergent. In the present wind cyeles, two amplitudes are considered.
One corresponds to the design wind load in Table 1 and the other is twice this value. Figures
8(a) und 8(a’) show how these hysteresis loops of semi-rigid connections become convergent
under the present cyclic wind loads. Herein, for simplicity, we only show the results for
portal frames under cyclic wind loads with a larger amplitude. From Figs 8(a) and 8(a’),
it can be seen that the convergence of hysteresis loops differs uccording to whether the
vertical load is applied to columns or to beams. That is, the hysteresis loops for the latter
case converge slower than those for the former. This tendency is also observed in other
frames.

To examine the critical behavior, the vertical load is increased from the design load
level after the removal of the wind toad. Similar to the analysis of frames without load
history, the arc-length of the vertical load -displacement curve is increased monotonically.
The vertical-load vs horizontal-displacement relations obtained from the present analysis
are ilustrated in Figs 9(a) -9(c) and Figs 9(a’)-9(¢’). classificd in a similar manner to that
of Figs 7(a)-7(c) and Figs 7(a’)}-7(c’). For comparison, the results for the perfect system
without load history are also shown in these figures.

As can be seen from these figures, the load history caused by the wind load has a
significant influcnce on the critical behavior of frames with concentrated loads, applied
vertically to columns. Due (o the initial imperfection resulting from a load history, these
frames only exhibit the limit load instability similar to the imperfect system in Figs 7(a’)-
7(c’). This limit load is located at the foad level lower than the bifurcation point of a perfect
system. This tendency becomes more pronounced as the amplitude of the cyclic wind
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load becomes large. However, with the increase in horizontal displacements, the load-
displacement curves rapidly approach those of perfect systems.

In contrast to the above case, most of the load-displacement curves of frames under
distributed load are the same, regardless of whether the frames have load history or not.
One exception is the example of one-story. two-bay frame. In this case, the bifurcation doces
not occur due to the imperfection caused by the load history. However, even for this case,
its load-displacement curve almost coincides with that of a perfect system. The critical
behavior of the other frames is not influcnced by their load history. That is, in spite of a load
history, the portal frame as well as the two-story, one-bay frame exhibit both bifurcation and
limit load instability, coincident exactly with that of the corresponding perfect systems with
virgin connections. In the above cases, the imperfection caused by the cyclic wind load is
gradually reduced with an increase in the distributed load applied on beams, and almost
completely disappears before bifurcation occurs. This can be explained further in the
following.

From the constitutive relation in Fig. 2, the tangent stiffness of connections decreases
with an increase in applicd moment. This implies that the increment of moment is more rapid
in connections with less deformation. In other words, a connection with less deformation,
deforms with a higher rate than that with a larger deformation, As a result, with an increase
of the loads applied to beams, the deformations of fraumes are adjusted naturally such that
they become symmetric, thus resulting in a perfect system,

6. CONCLUDING REMARKS

In this paper, we have presented an accurate, yet simple method that can be used to
analyze the inclastic critical behavior of semi-rigid frames, with special emphasis on bifur-
cation and limit-load instability.

Using the proposed method. the critical behavior of several rectangular frames with
semi-rigid connections is accurately analyzed. In the present analysis, we have also inves-
tigated the cffects of imperfections due to a history of cylic wind load on the critical
behavior,

We have found that the buckling of semi-rigid frames is greatly influenced by the
vertical load conditions. This is quite different from the customary frames with pinned,
rigid or linearly elastic conncctions.

If the concentrated loads are applied vertically on columns, the loads of a perfect
system drop dramatically after bifurcation and the frame loses its stability. Furthermore,
the frame under this load condition is very sensitive to its imperfections, i.e. the imperfection
due to horizontal loads and the imperfection resulting from a history of cyclic wind loads.
These imperfections considerably reduce the maximum value of vertical loads.
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In contrast to the above case, if distributed loads are vertically applied on beams, the
loads of a perfect system increase even after bifurcation, and the frame does not lose its
stability until the loads reach their limit point. In addition, the frame is less influenced by
its imperfections. Specifically. the imperfection caused by a history of cyclic wind loads
almost completely disappears in a semi-rigid frame before bifurcation occurs. and its critical
behavior virtually coincides with that of a perfect system with virgin connections.
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